翻訳と辞書
Words near each other
・ Lichine
・ Lichine (horse)
・ Lichinella
・ Lichinga
・ Lichinga Airport
・ Lichinga District
・ Lichinodium
・ Lichinomycetes
・ Lichk
・ Lichk, Syunik
・ Lichki Ramche
・ Lichkov
・ Lichmera
・ Lichnasthenus
・ Lichnerowicz conjecture
Lichnerowicz formula
・ Lichnice Castle
・ Lichnomesopsyche
・ Lichnoptera
・ Lichnoptera moesta
・ Lichnoptera moestoides
・ Lichnov
・ Lichnov (Bruntál District)
・ Lichnowo
・ Lichnowy, Chojnice County
・ Lichnowy, Malbork County
・ Lichnówki
・ Lichnówki Pierwsze
・ Lichoca
・ Lichoceves


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lichnerowicz formula : ウィキペディア英語版
Lichnerowicz formula
The Lichnerowicz formula (also known as the Lichnerowicz–Weitzenböck formula) is a fundamental equation in the analysis of spinors on pseudo-Riemannian manifolds. In dimension 4, it forms a piece of Seiberg–Witten theory and other aspects of gauge theory. It is named after noted mathematicians André Lichnerowicz who proved it in 1963, and Roland Weitzenböck. The formula gives a relationship between the Dirac operator and the Laplace–Beltrami operator acting on spinors, in which the scalar curvature appears in a natural way. The result is significant because it provides an interface between results from the study of elliptic partial differential equations, results concerning the scalar curvature, and results on spinors and spin structures.
Given a spin structure on a pseudo-Riemannian manifold ''M'' and a spinor bundle ''S'', the Lichnerowicz formula states that on a section ψ of ''S'',
:D^2\psi = \nabla^
*\nabla\psi + \frac\operatorname\psi
where Sc denotes the scalar curvature and \nabla^
*\nabla is the connection Laplacian. More generally, given a complex spin structure on a pseudo-Riemannian manifold ''M'', a spinor bundle ''W''± with section \phi, and a connection ''A'' on its determinant line bundle ''L'', the Lichnerowicz formula is
:D_^D_\phi=\nabla _A^\nabla_\phi+\fracR\phi+\frac\langle F_^,\phi\rangle.
Here, D_A is the Dirac operator D_A:\Gamma (W^+)\to \Gamma (W^-), and \nabla _A is the covariant derivative associated with the connection A, \nabla _A: \Gamma (W^+)\to \Gamma(W^+\otimes T_M^
*). R is the usual scalar curvature (a contraction of the Ricci tensor) and F_A^+ is the self-dual part of the curvature of A. The asterisks denote the adjoint of the quantity and the brackets \langle , \rangle denote the Clifford action.
==See also==

* Weitzenböck formula

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lichnerowicz formula」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.